

Mark Scheme (Results)

January 2018

Pearson Edexcel International Advanced Subsidiary Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code WFM01_01_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively.
 Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCELLAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to x = ...

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2018 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme			Notes	Marks
1.	Given $f(x) = 3x^2 - \frac{5}{3\sqrt{x}} - 6$, $x > 0$ and	root, α , of f	(x) = 0 lies in	n the interval [1.5, 1.6]	
(a)	$f'(x) = 6x + \frac{5}{6}x^{-\frac{3}{2}}$	At least one of		$\rightarrow \pm Ax$ or $-\frac{5}{3\sqrt{x}} \rightarrow \pm Bx^{-\frac{3}{2}}$	M1
	0	-4 1'.CC4'4'		A and B are non-zero constants.	A 1
	Corre	ct differentiati		n be simplified or un-simplified dent on the previous M mark	A1
	$\left\{\alpha \simeq 1.5 - \frac{f(1.5)}{f'(1.5)}\right\} \Rightarrow \alpha \simeq 1.5 - \frac{-0.610}{9.453}$	08276349 609212	Valid atte	empt at Newton-Raphson using ir values of $f(1.5)$ and $f'(1.5)$	dM1
	$\{\alpha = 1.564613167\} \Rightarrow \alpha = 1.565 \text{ (3 dp}$))		ndent on all 3 previous marks 1.565 on their first iteration nore any subsequent iterations)	A1 cso
	Correct differentiation followed by a				
(1.)	Correct answer with I	<u>10</u> working sc	ores no mar	ks in part (a)	(4)
(b)	• $\frac{\alpha - 1.5}{"0.6108276349"} = \frac{1.6 - \alpha}{"0.362384308."}$ • $\frac{\alpha - 1.5}{1.6 - \alpha} = \frac{"0.6108276349"}{"0.3623843083"}$	Either • $\frac{\alpha - 1.5}{"0.6108276349"} = \frac{1.6 - \alpha}{"0.3623843083"}$ • $\frac{\alpha - 1.5}{1.6 - \alpha} = \frac{"0.6108276349"}{"0.3623843083"}$ • $\frac{\alpha - 1.5}{"0.6108276349"} = \frac{1.6 - 1.5}{"0.3623843083"}$ A correct linear interpolation method. Do not allow this mark if a total of one or three negative lengths are used or if either fraction is the wrong way up. This mark may be implied.			M1
	Either • $\alpha = \left(\frac{(1.6)("0.6108276349") + (1.6)("0.3623843083" + "0.6)}{"0.3623843083" + "0.6)}\right)$ • $\alpha = 1.5 + \left(\frac{"0.6108276349" + "0.6)}{"0.3623843083" + "0.6)}\right)$ • $\alpha = 1.5 + \left(\frac{"-0.6108276349" + "-0.6)}{"-0.3623843083" + "-0.6)}\right)$	9" 6108276349	(0.1)	dependent on the previous M mark Rearranges to make $\alpha =$	dM1
	$\{\alpha = 1.562764092\} \Rightarrow \alpha = 1.563 $ (3 d	p)	(Ig	1.563 nore any subsequent iterations)	A1 cao
					(3)
(b) Way 2	$\frac{x}{"0.6108276349"} = \frac{0.1 - x}{"0.3623843083"}$	$x \Rightarrow x = \frac{(0.1)}{0}$	0.9732119432		
	$\alpha = 1.5 + 0.062764092$			nds x using a correct method of gles and applies "1.5 + their x "	M1 dM1
	$\{\alpha = 1.562764092\} \Rightarrow \alpha = 1.563 $ (3 d	(p)		1.563	A1 cao
(b) Way 3	$\frac{0.1 - x}{"0.6108276349"} = \frac{x}{"0.3623843083"}$	$-\Rightarrow x = \frac{(0.1)}{(0.1)}$	("0.36238430).9732119432	$\frac{083"}{2} = 0.037235908$	
	$\alpha = 1.6 - 0.037235908$		Fii	nds x using a correct method of gles and applies "1.6 – their x "	M1 dM1
	$\{\alpha = 1.562764092\} \Rightarrow \alpha = 1.563 $ (3 d	p)		1.563	A1
					cao 7

		Question 1 Notes						
1. (a)	Note	Incorrect differentiation followed by their estimate of α with no evidence of applying the						
, ,		NR formula is final dM0A0.						
	dM1	This mark can be implied by applying at least one correct <i>value</i> of either $f(1.5)$ or $f'(1.5)$						
	to 1 significant figure in $1.5 - \frac{f(1.5)}{f'(1.5)}$. So just $1.5 - \frac{f(1.5)}{f'(1.5)}$ with an incorrect answ and no other evidence scores final dM0A0							
		and no other evidence scores final dM0A0.						
	Note	You can imply the M1A1 marks for algebraic differentiation for either						
		• $f'(1.5) = 6(1.5) + \frac{5}{6}(1.5)^{-\frac{3}{2}}$						
		• f'(1.5) applied correctly in $\alpha \approx 1.5 - \frac{3(1.5)^2 - \frac{5}{3}(1.5)^{-\frac{1}{2}} - 6}{6(1.5) + \frac{5}{6}(1.5)^{-\frac{3}{2}}}$ Differentiating INCORRECTLY to give $f'(x) = 6x - \frac{5}{6}x^{-2}$ leads to						
	Note	Differentiating INCORRECTLY to give $f'(x) = 6x - \frac{5}{6}x^{-2}$ leads to						
		$\alpha \simeq 1.5 - \frac{-0.6108276349}{9.3703703704} = 1.565187139 = 1.565 (3 dp)$						
		This response should be awarded M1 A0 dM1 A0						
	Note	Differentiating INCORRECTLY to give $f'(x) = 6x - \frac{5}{6}x^{-\frac{3}{2}}$ leads to						
		$\alpha \simeq 1.5 - \frac{-0.6108276349}{8.546390788} = 1.571471999 = 1.571 (3 dp)$						
		This response should be awarded M1 A0 dM1 A0						
	S.C.	Special Case: Differentiating INCORRECTLY to give $f'(x) = 6x - \frac{5}{6}x^{-\frac{3}{2}}$ and						
		$\alpha \simeq 1.5 - \frac{f(1.5)}{f'(1.5)} = 1.571$ is M1 A0 dM1 A0						
1. (b)	Note	$\frac{\alpha - 1.5}{1.6 - \alpha} = \frac{ " - 0.6108276349"}{"0.3623843083"}$ is a valid method for the first M mark						
	Note	$\frac{\alpha - 1.5}{1.6 - \alpha} = \frac{"0.6108276349"}{"0.3623843083"} \Rightarrow \alpha = 1.563 \text{ with no intermediate working is M1 dM1 A1}$						
	Note	$\frac{\alpha - 1.5}{-0.6108276349} = \frac{1.6 - \alpha}{0.3623843083} \implies \alpha = 1.745861961 = 1.745 (3 dp) \text{ is M0 dM0 A0}$						
	Note	$\frac{\alpha - 1.5}{-0.6108276349} = \frac{1.6 - \alpha}{-0.3623843083} \Rightarrow \alpha = 1.562764092 = 1.563 (3 dp) \text{ is M1 dM1 A1}$						

Question Number	Scheme		Notes	Marks	
2.	$f(z) = z^4 - 6z^3 + 38z^2 - 94z$	$z + 221$, $z_1 = 2 + 3i$	satisfies $f(z) = 0$		
(a)	$\left\{z_2 = \right\} 2 - 3i$		2-3i seen or used in part (a)	B1	
	$z^2 - 4z + 13$		Attempt to expand $(z-(2+3i))(z-(2-3i))$ or $(z-(2+3i))(z-(\text{their complex }z_2))$ ny valid method <i>to establish a quadratic factor</i> . $z=2\pm 3i \Rightarrow z-2=\pm 3i \Rightarrow z^2-4z+4=-9$ or sum of roots = 4, product of roots 13 to give $z^2\pm(\text{their sum})z+(\text{their product})$	M1	
			$z^2 - 4z + 13$	A1	
	Attempts to find the other quadratic factor. For all long division to obtain either $z^2 \pm kz +, k = \infty$ or $z^2 \pm \alpha z + \beta$, $\beta = \text{value} \neq 0$, $\alpha = 0$ or e.g. factor to obtain either $z = 0$ or $z = 0$ or $z = 0$. At $z = 0$ or $z = 0$				
			$z^2 - 2z + 17$	A1	
	$\left\{z^2 - 2z + 17 = 0 \Longrightarrow\right\}$				
	Either $z = \frac{2 \pm \sqrt{(-2)^2}}{2(1)}$ • $(z-1)^2 - 1 + 17 = 0$		dependent on only the previous M mark Correct method of applying the quadratic formula or completing the square for solving a 3TQ on their 2 nd quadratic factor	dM1	
	${z=}1+4i, 1-4i$		1 + 4i and 1 – 4i	A1	
	` '			((7)
(b)	Im (1,4) (2,3)		 Criteria 2±3i plotted correctly in quadrants 1 and 4 Dependent on the final M mark being awarded in part (a). Their final two roots are plotted correctly 		
		≻ Re	Satisfies at least one of the criteria	B1ft	
	(2, -3) $(1, -4)$		Satisfies both criteria with some indication of scale or coordinates stated with at least one pair of roots symmetrical about the real axis	B1ft	
				((<u>2</u>)

		Question 2 Notes							
2. (a)	Note	No working leading to $x = 1 + 4i$, $1 - 4i$ is M0A0M0A0M0A0.							
	Note	You can assume $x \equiv z$ for solutions in this question.							
	Note	Give dM1A1 for $z^2 - 2z + 17 = 0 \Rightarrow z = 1 + 4i, 1 - 4i$ with no intermediate working.							
	Note	Note Special Case: If their second 3 term quadratic factor can be factorised then							
	give Special Case dM1 for correct factorisation leading to $z =$								
	Note	Otherwise, give 3 rd dM0 for applying a method of factorising to solve their 3TQ.							
	Note	Reminder: Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "							
		Formula:							
		Attempt to use the correct formula (with values for a , b and c)							
		Completing the square:							
		$\left(z \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, q \neq 0, \text{ leading to } z = \dots$							

Question Number	Scheme			Notes	Marks
3. (a)	$\sum_{r=1}^{n} r^{2}(r+1) = \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} r^{2}$				
	$= \frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2n+1)$			expand $r^2(r+1)$ and attempts to one correct standard formula into their resulting expression.	M1
			C	Correct expression (or equivalent)	A1
	$= \frac{1}{12}n(n+1)[3n(n+1)+2(2n+1)]$		ttempt to	endent on the previous M mark of factorise at least $n(n+1)$ having	dM1
	12	atten	ipted to s	ubstitute both standard formulae.	
	$= \frac{1}{12}n(n+1)[3n^2 + 7n + 2]$ $= \frac{1}{12}n(n+1)(n+2)(3n+1)$			step does not have to be written}	
	$= \frac{1}{12}n(n+1)(n+2)(3n+1)$		С	orrect completion with no errors. Note: $a = 3, b = 1$	A1
			(4)		
(b)	$\sum_{r=5}^{25} r^2 (r+1) + \sum_{r=1}^{k} 3^r = 140543$	{ N	ote: Let	$f(n) = \frac{1}{12}n(n+1)(n+2)(3n+1)$	
				or their answer to part (a).} Attempts to find either	
	$\left\{ \sum_{r=5}^{25} r^2(r+1) \right\} = \left(\frac{1}{12} (25)(26)(27)(76) \right)$	$-\left(\frac{1}{12}(4)(5)\right)$	(6)(13)	f(25) - f(4) or	
	$\left(\frac{Z}{r=5}\right)$	(12)	f(25) - f(5)	M1
	$\left\{ =111150 - 130 = 11102 \right\}$	20 }		This mark can be implied	
			depe	endent on the previous M mark	
	$\sum_{r=1}^{k} 3^{r} = 140543 - "111020" \ \left\{ = 29523 \right\}$		t	heir $\sum_{r=1}^{k} 3^r = 140543 - "111020"$	dM1
				This mark can be implied	
	$\frac{3(1-3^k)}{1-3}$ or $\frac{3(3^k-1)}{3-1}$			Correct GP sum formula with $a = 3$, $r = 3$, $n = k$	M1
	$\left\{\frac{3\left(1-3^{k}\right)}{1-3} = 29523 \Rightarrow 3^{k} = 19683 \Rightarrow 3^{k} = 196$			k = 9 from a correct solution	A1 cso
			1		(4)
(b)	Alt 1 Method for the final 2 marks				
Alt 1	$\sum_{r=1}^{8} 3^r = 29523$			Attempts to solve $\sum_{r=1}^{k} 3^r = \text{value}$	M1
	$\Rightarrow 3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9$ or $3+9+27+81+243+729+2187+38+39+38+38+38+38+38+38+38+38+38+38+38+38+38+$	+ 6561+1968		by evaluating 3^r from $r=1$ to at least as far as $r=9$	
	= 29523, so $k = 9$			k = 9 from a correct solution	A1 cso
(b)	Alt 2 Method for the final 2 marks				
Alt 2	$\sum_{r=1}^{k} 3^{r} = 29523 \implies 3(1+3+3^{2}+3^{3}++3^{k-1}) = 29523$				
	$\left\{ \sum_{r=1}^{k} 3^{r} = \sum_{r=1}^{k-1} 3^{r} + 3^{k} = \right\} \frac{"29523"}{3} - 1 + $	$3^k = "29523$	3"	$\frac{"29523"}{3} - 1 + 3^k = "29523"$	M1
	$\left\{3^k = 19683 \implies\right\} k = 9$			k = 9 from a correct solution	A1 cso
	,				8
				n / Hom a correct solution	

		Question 3 Notes
3. (a)	Note	Applying e.g. $n = 1$, $n = 2$ to the printed equation without applying the standard formulae
		to give $a=3$, $b=1$ is M0A0M0A0
	Alt 1	Alt Method 1 (Award the first two marks using the main scheme)
		Using $\frac{1}{12} (3n^4 + 10n^3 + 9n^2 + 2n) = \frac{1}{12} (an^4 + (3a+b)n^3 + (2a+3b)n^2 + 2bn)$ o.e.
	dM1	Equating coefficients to find both $a =$ and $b =$ and at least one of $a = 3, b = 1$
	A1 cso	Finds $a = 3$, $b = 1$ and demonstrates the identity works for all of its terms.
	Alt 2	Alt Method 2: (Award the first two marks using the main scheme)
		$\frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2n+1) \equiv \frac{1}{12}n(n+1)(n+2)(an+b)$
	dM1	Substitutes $n = 1$, $n = 2$, into this identity o.e. and solves to find both $a =$ and $b =$
		and at least one of $a=3$, $b=1$. Note: $n=1$ gives $4=a+b$ and $n=2$ gives $7=2a+b$
	A1	Finds $a=3, b=1$
	Note	Allow final dM1A1 for $\frac{1}{4}n^4 + \frac{5}{6}n^3 + \frac{3}{4}n^2 + \frac{1}{6}n$ or $\frac{1}{12}n(3n^3 + 10n^2 + 9n + 2)$
		or $\frac{1}{12}(3n^4 + 10n^3 + 9n^2 + 2n) \rightarrow \frac{1}{12}n(n+1)(n+2)(3n+1)$ with no incorrect working.
	Note	A correct proof $\sum_{r=1}^{n} r^2(r+1) = \frac{1}{12}n(n+1)(n+2)(3n+1)$ followed by stating an incorrect
		e.g. $a=1, b=3$ is M1A1dM1A1 (ignore subsequent working)
(b)	Note	Using $f(25) - f(5)$ gives
		• $f(25) - f(5) = 111150 - 280 = 110870$
	Note	Allow 1st M1 for either
		$\left\{\sum_{r=5}^{25} r^2 (r+1)\right\} = \left(\frac{1}{4} (25)^2 (26)^2 + \frac{1}{6} (25)(26)(51)\right) - \left(\frac{1}{4} (4)^2 (5)^2 + \frac{1}{6} (4)(5)(9)\right)$
		$\left\{ = (105625 + 5525) - (100 + 30) = 111150 - 130 = 111020 \right\}$
		$\left\{\sum_{r=5}^{25} r^2 (r+1)\right\} = \left(\frac{1}{4} (25)^2 (26)^2 + \frac{1}{6} (25)(26)(51)\right) - \left(\frac{1}{4} (5)^2 (6)^2 + \frac{1}{6} (5)(6)(11)\right)$
		$\left\{ = (105625 + 5525) - (225 + 55) = 111150 - 280 = 110870 \right\}$
	Note	$\frac{3(1-3^k)}{1-3} \text{ or } \frac{3(3^k-1)}{3-1} = 29523 \Rightarrow k = 9 \text{ with no intermediate working is } 2^{\text{nd}} \text{ M1 } 2^{\text{nd}} \text{ A1}$
	Note	$\sum_{r=1}^{k} 3^{r} = 29523 \implies k = 9 \text{ with no intermediate working is } 2^{\text{nd}} \text{ M1 } 2^{\text{nd}} \text{ A1}$

Question Number	Scheme	Notes	Marks	
4.	$3x^2 + 2x + 5 =$	0 has roots α , β		
(a)	$\alpha + \beta = -\frac{2}{3}, \ \alpha\beta = \frac{5}{3}$			
	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$	Use of the correct identity for α^2 (May be implied by their v	I IVI I	
	$= \left(-\frac{2}{3}\right)^2 - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$	$= \left(-\frac{2}{3}\right)^2 - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$ $-\frac{26}{9} \text{ or } -2\frac{8}{9} \text{ from correct working}$		
			(2)	
(b)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$ or $= (\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta) = \dots$	Use of an appropriate and condidentity for α^3 (May be implied by their value)	$+\beta^3$ M1	
	$= \left(-\frac{2}{3}\right)^3 - 3\left(\frac{5}{3}\right)\left(-\frac{2}{3}\right) = \frac{82}{27} *$ or $= \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} *$	$\frac{82}{27}$ from correct wor	rking A1 * cso	
(c)	0 02	20.0	(2)	
	Sum = $\alpha + \frac{\alpha}{\beta^2} + \beta + \frac{\beta}{\alpha^2}$ or = $\frac{\alpha\beta^2 + \alpha}{\beta^2}$ = $\alpha + \beta + \frac{\alpha^3 + \beta^3}{(\alpha\beta)^2}$ = $\frac{\alpha^3 + \beta^3 + \alpha^2}{\alpha^2\beta}$ = $\left(-\frac{2}{3}\right) + \frac{\left(\frac{82}{27}\right)}{\left(\frac{5}{3}\right)^2}$ $\left\{ = -\frac{2}{3} + \frac{82}{75} = \frac{32}{75}$	either $\frac{\alpha^3 + \beta^3}{(\alpha\beta)^2}$ or $\frac{\alpha^3}{\alpha^2}$ and substitutes at least of	$\frac{+\beta^{3}}{^{2}\beta^{2}}$ one of M1 or $\alpha\beta$ e sum	
	Product = $\left(\alpha + \frac{\alpha}{\beta^2}\right)\left(\beta + \frac{\beta}{\alpha^2}\right)$ or = $\left(\frac{\alpha\beta^2 + \beta^2}{\beta^2}\right)$ = $\alpha\beta + \frac{\alpha\beta}{\alpha^2} + \frac{\alpha\beta}{\beta^2} + \frac{\alpha\beta}{\alpha^2\beta^2}$ = $\frac{\alpha^3\beta^3 + \alpha\beta}{\alpha^3\beta^3 + \alpha\beta}$ = $\alpha\beta + \frac{\beta}{\alpha} + \frac{\alpha}{\beta} + \frac{1}{\alpha\beta}$ = $\frac{\alpha^3\beta^3 + \alpha\beta}{\alpha\beta^3 + \alpha\beta}$ = $\alpha\beta + \frac{\beta^2 + \alpha^2}{\alpha\beta} + \frac{1}{\alpha\beta}$ = $\frac{5}{3} - \frac{26}{15} + \frac{3}{5} = \frac{5}{3} - \frac{26}{15} + \frac{3}{5} = \frac{26}{3} - \frac{26}{15} + 2$	$\frac{\beta^{3} + \alpha^{3}\beta + \alpha\beta}{\alpha^{2}\beta^{2}}$ Expands $\left(\alpha + \frac{\alpha}{\beta^{2}}\right)\left(\beta + \frac{\alpha}{\beta^{2}}\right)$ to give 4 term subst either their $\alpha\beta$ at least or their α^{2}	as and itutes once $+\beta^2$ ulting	
	$x^2 - \frac{32}{75}x + \frac{8}{15} = 0$	Applies $x^2 - (\text{sum})x + \text{product}$ (can be imposed where sum and product are numerical value Note: "=0" not required for this	alues. M1	
	$75x^2 - 32x + 40 = 0$	Any integer multiple of $75x^2 - 32x + 40$ including the "	=0" A1	
			(4)	

		Question 4 Notes					
4. (a)	Note	Writing a correct $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ without attempting to substitute at least one					
		of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^2 - 2\alpha\beta$ is M0					
	Note	Give M1A0 for $\alpha + \beta = \frac{2}{3}$, $\alpha\beta = \frac{5}{3}$ leading to $\alpha^2 + \beta^2 = \left(\frac{2}{3}\right)^2 - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$					
	Note	Give M1A1 for writing $\alpha^2 + \beta^2 = -\frac{26}{9}$ with no evidence of applying $\alpha + \beta = -\frac{2}{3}$, $\alpha\beta = \frac{5}{3}$					
(b)	Note	Allow M1 A1 for $\alpha^3 + \beta^3 = (\alpha^2 + \beta^2)(\alpha + \beta) - \alpha\beta(\alpha + \beta)$					
		$= \left(-\frac{26}{9}\right)\left(-\frac{2}{3}\right) - \left(-\frac{2}{3}\right)\left(\frac{5}{3}\right) \left\{=\frac{52}{27} + \frac{10}{9}\right\} = \frac{82}{27} *$					
	Note	Writing a correct $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ without attempting to substitute					
		at least one of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ is M0					
	Note	Writing a correct $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ without attempting to substitute					
() (1)		at least one of either their $\alpha + \beta$, their $\alpha^2 + \beta^2$ or their $\alpha\beta$ into $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ is M0					
(a), (b)	Note	Applying $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ explicitly will score (a) M0A0, (b) M0A0					
		• E.g. In part (a), give no credit for $\left(\frac{-1+\sqrt{14}i}{3}\right)^2 + \left(\frac{-1-\sqrt{14}i}{3}\right)^2 = -\frac{26}{9}$					
	• E.g. In part (b), give no credit for $\left(\frac{-1+\sqrt{14}i}{3}\right)^3 + \left(\frac{-1-\sqrt{14}i}{3}\right)^3 = \frac{82}{17}$						
	Note	Using $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ to find $\alpha+\beta=-\frac{2}{3}$, $\alpha\beta=\frac{5}{3}$ followed by					
		• $\alpha^2 + \beta^2 = \left(\frac{2}{3}\right)^2 - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$, scores M1A0 in part (a)					
		• $\alpha^3 + \beta^3 = \left(-\frac{2}{3}\right)^3 - 3\left(\frac{5}{3}\right)\left(-\frac{2}{3}\right) = \frac{82}{27}$, scores M1A0 in part (b)					
(c)	Note	A correct method leading to $a = 75$, $b = -32$, $c = 40$ without writing a final answer of					
		$75x^2 - 32x + 40 = 0$ is final M1A0.					
	Note	Using $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ explicitly to find the sum and product of $\left(\alpha+\frac{\alpha}{\beta^2}\right)$ and $\left(\beta+\frac{\beta}{\alpha^2}\right)$					
	Note	scores M0M0M0A0 in part (c).					
	14010	Using $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ to find $\alpha+\beta=-\frac{2}{3}$, $\alpha\beta=\frac{5}{3}$ and applying $\alpha+\beta=-\frac{2}{3}$, $\alpha\beta=\frac{5}{3}$					
		can potentially score full marks in part (c). E.g.					
		(82)					
		• Sum = $\alpha + \beta + \frac{\alpha^3 + \beta^3}{(\alpha\beta)^2} = \left(-\frac{2}{3}\right) + \frac{\left(\frac{82}{27}\right)}{\left(\frac{5}{3}\right)^2} = \frac{32}{75}$					
		• Product = $\alpha\beta + \frac{\beta^2 + \alpha^2}{\alpha\beta} + \frac{1}{\alpha\beta} = \left(\frac{5}{3}\right) + \frac{\left(-\frac{26}{9}\right)}{\left(\frac{5}{3}\right)} + \frac{1}{\left(\frac{5}{3}\right)} = \frac{8}{15}$					
		• $x^2 - \frac{32}{75}x + \frac{8}{15} = 0 \implies 75x^2 - 32x + 40 = 0$					

Question Number	Scheme		Notes	Marks
5.	(i) $\frac{2z+3}{z+5-2i} = 1$	1 + i (ii) $w =$	$= (3 + \lambda i)(2 + i)$ and $ w = 15$	
(i)	2z + 3 = (1 + i)(z + 5 - 2i)		Multiplies both sides by $(z + 5 - 2i)$	M1
	2z + 3 = z + 5 - 2i + iz + 5i + 2 =	= z + iz + 7 + 3i		
	E.g. • $2z - z(1+i) = (1+i)(5-2i)$ • $z - iz = 4 + 3i$	-3	dependent on the previous M mark Collects terms in z to one side	dM1
	$z = \frac{4+3i}{1-i}$		Correct expression for $z =$	A1
	$z = \frac{(4+3i)}{(1-i)} \frac{(1+i)}{(1+i)} = \frac{1}{2} + \frac{7}{2}i$	dependent on both previous M marks merator and denominator by the conjugate of the denominator and attempts to find $z =$	ddM1	
	(1-1) $(1+1)$ 2 2	e.g. $\frac{1}{2} + \frac{7}{2}i$	or $\frac{7}{2}i + \frac{1}{2}$ or $0.5 + 3.5i$ or $a = \frac{1}{2}$, $b = \frac{7}{2}$	A1 cao
(1)	2 2 4 3/ 5 23			(5)
(i)	2z + 3 = (1 + i)(z + 5 - 2i)	3:)	Multiplies both sides by $(z + 5 - 2i)$	M1
Way 2	2(a + bi) + 3 = (1 + i)(a + bi + 5 - 2i + 6i)(2a + 3) + 2bi = (a + bi + 5 - 2i + 6i)(2a + 3) + 2bi = (a - b + 7) + (b + 6i)(a + bi) + (a + bi) + (a + bi) + (b + bi) + (a + bi) + (b + bi	ai - b + 5i + 2 $+ a + 3)i$	dependent on the previous M mark Applies $z = a + bi$, multiplies out and attempts to equate either the real part or the imaginary part of the resulting equation	dM1
	${Real \Rightarrow } 2a + 3 = a - b$ ${Imaginary \Rightarrow } 2b = b + a$		Both correct equations which can be simplified or un-simplified	A1
	$\begin{cases} a+b=4\\ -a+b=3 \end{cases} \Rightarrow b=\frac{7}{2}, a=\frac{1}{2}$	equat	nt on both previous M marks. Obtains two ions both in terms of a and b and solves them ously to give at least one of $a =$ or $b =$	ddM1
		e.g. $u = \frac{1}{2}$	$p = \frac{7}{2}$ or $\frac{1}{2} + \frac{7}{2}i$ or $\frac{7}{2}i + \frac{1}{2}$ or $0.5 + 3.5i$	A1 cao
(::)			0 1 11 1 1 1 1	(5)
(ii)	$w = 6 + 3i + 2i\lambda - \lambda$ $w = (6 - \lambda) + (3 + 2\lambda)i$		Squares and adds the real and imaginary parts of w and sets equal to either 15^2 or 15	M1
	$W = (6 - \lambda) + (3 + 2\lambda)^{1}$ $(15)^{2} = (6 - \lambda)^{2} + (3 + 2\lambda)^{2}$		Correct equation which can be simplified or un-simplified	A1
	$\begin{cases} 225 = 36 - 12\lambda + \lambda^2 + 9 + 12\lambda + 225 = 45 + 5\lambda^2 \implies \lambda^2 = 36 \end{cases}$	$-4\lambda^2$	dependent on the previous M mark Solves their quadratic in λ to give $\lambda^2 = \dots$ or $\lambda = \dots$	dM1
	$\lambda = 6, -6$		$\lambda = 6, -6$	A1
(::)				(4)
(ii) Way 2	$\left\{ \left (3 + \lambda i)(2 + i) \right = 15 \Longrightarrow \right\}$ $\sqrt{(3^2 + \lambda^2)} \sqrt{(2^2 + 1^2)} = 15$		$\sqrt{(3^2 + \lambda^2)} \sqrt{(2^2 + 1^2)} = 15$ or $(3^2 + \lambda^2)(2^2 + 1^2) = 15$	M1
	or $(3^2 + \lambda^2)(5) = (15)^2$		Correct equation which can be simplified or un-simplified	A1
	$45 = 9 + \lambda^2 \implies \lambda^2 = 36$		dependent on the previous M mark Solves their quadratic in λ to give $\lambda^2 =$ or $\lambda =$	dM1
	$\lambda = 6, -6$		$\lambda = 6, -6$	A1
				(4)
				9

Question Number	Scheme			Note	s	Marks
5.	$\frac{2z+3}{z+5-}$	$\frac{1}{2i} = 1 + i$				
(i) Way 3	$\frac{2z+10-4i-7+4i}{z+5-2i} = 1+i$					
	$2 + \frac{-7 + 4i}{z + 5 - 2i} = 1 + i$		2z + 3 $z + 5 - 2i$	→ 2 ±	$\frac{k}{z+5-2i}, \ k \in \mathbb{C}$	M1
	$1 - i = \frac{7 - 4i}{z + 5 - 2i}$					
	$z + 5 - 2i = \frac{7 - 4i}{1 - i}$		Rearra	inges to g	e previous M mark ive $z + 5 - 2i =$	dM1
	Correct expression for $z + 5 - 21 =$				A1	
	$z + 5 - 2i = \frac{(7 - 4i)}{(1 - i)} \frac{(1 + i)}{(1 + i)} \Rightarrow z = \dots$ dependent on both previous M marks Multiplies numerator and denominator by the conjugate of the denominator and attempts to find $z = \dots$				tor and denominator of the denominator	ddM1
	$\left\{z + 5 - 2i = \frac{11}{2} + \frac{3}{2}i \implies\right\} z = \frac{1}{2} + \frac{7}{2}i \qquad \text{e.g. } \frac{1}{2} + \frac{7}{2}i \text{or } \frac{7}{2}i + \frac{1}{2} \text{ or } 0.5 + 3.5i$				$1 + \frac{1}{2}$ or $0.5 + 3.5i$	A1
					(5)	
(i) Way 4	$\frac{2(a+bi)+3}{a+bi+5-2i} = 1+i \implies \frac{(2a+3)+2bi}{(a+5)+(b-2)i} = 1+i$					
	$\left(\frac{(2a+3)+2bi}{(a+5)+(b-2)i}\right)\left(\frac{(a+5)-(b-2)i}{(a+5)-(b-2)i}\right) = 1$	+ i				
	$\frac{\left[(2a+3)(a+5)+2b(b-2)\right]+\mathrm{i}\left[2b(a+5)-(2a+5)^2+(b-2)^2\right]}{(a+5)^2+(b-2)^2}$	(2a+3)(b-1)	$\frac{(2)}{(2)} = 1$	+ i		
	$\{\text{Real} \Rightarrow \} \frac{(2a+3)(a+5)+2b(b-2)}{(a+5)^2+(b-2)^2}$ $(2a+3)(a+5)-(2a+3)(b-2)$					M1
	{Imaginary \Rightarrow } $\frac{2b(a+5) - (2a+3)(b-2)}{(a+5)^2 + (b-2)^2}$	- = 1		b	oth the real part and the imaginary part	
	. , , , , ,		depende	ent on the	e previous M mark	
	{Real \Rightarrow } $a^2 + b^2 + 3a - 14 = 0$ {Imaginary \Rightarrow } $a^2 + b^2 + 6a - 11b + 23 = 0$		nipulates	s both the	ir real part and their their simplest forms	dM1
			Both	n correct s	simplified equations	A1
	"Real - Imaginary" gives $-3a + 11b - 37 = 0$	and e.g.				
	• $a = \frac{11b - 37}{3} \Rightarrow \left(\frac{11b - 37}{3}\right)^2 + b^2 + 3\left(\frac{11b - 37}{3}\right) - 14 = 0$ $\Rightarrow 2b^2 - 11b + 14 = 0 \Rightarrow (b - 2)(2b - 7) = 0 \Rightarrow b = \dots$ • $b = \frac{3a + 37}{11} \Rightarrow a^2 + \left(\frac{3a + 37}{11}\right)^2 + 3a - 14 = 0$ dependent on both previous M marks. Solves their equations simultaneously to obtain at least one value of $b = \dots$ or $a = \dots$			ddM1		
	$\Rightarrow 2a^2 + 9a - 5 = 0 \Rightarrow (a+5)(2a-1) =$	$0 \Rightarrow a = \dots$				
	$z = \frac{1}{2} + \frac{7}{2}i \mathbf{only}$			$\frac{7}{i}$ or $\frac{7}{2}$ i	$+\frac{1}{2}$ or $0.5 + 3.5i$	A1
						(5)

Question Number		Scheme	Notes	Marks		
5.		$\frac{2z+3}{z+5-2i}$	· = 1 + i			
(i) Way 5	$\frac{2z+3}{1+i}$	$\frac{3}{z} = z + 5 - 2i$				
	$\frac{(2z+3)}{(1+i)}$	$\frac{(1-i)}{(1-i)} = z + 5 - 2i$	Multiplies $\frac{(2z+3)}{(1+i)}$ by $\frac{(1-i)}{(1-i)}$ and sets equal to $z+5-2i$	M1		
	$\frac{(2z+3)}{2}$	$\frac{(1-i)}{2} = z + 5 - 2i$ $\frac{2iz - 3i}{2} = 2z + 10 - 4i$				
	2z + 3 -	2iz - 3i = 2z + 10 - 4i				
	2i	z = -7 + i	dependent on the previous M mark Rearranges to make $2iz =$			
			Correct expression for $2iz =$ A1			
	-2	$2z = -7i - 1 \Rightarrow z = \dots$	dependent on both previous M marks Multiplies both sides by i and attempts to find $z =$	ddM1		
	z	$=\frac{1}{2}+\frac{7}{2}i$	e.g. $\frac{1}{2} + \frac{7}{2}i$ or $\frac{7}{2}i + \frac{1}{2}$ or $0.5 + 3.5i$	A1		
				(5)		
			estion 5 Notes			
5. (i)	Note	Way 4 method generates $z = \frac{1}{2} + \frac{7}{2}i$	and $z = -5 + 2i$ but $z = \frac{1}{2} + \frac{7}{2}i$ must be state	ed as the		
		only answer for the final A mark				
	Note	Give final A0 for a correct $a = \frac{1}{2}$, $b = \frac{1}{2}$	$=\frac{7}{2}$ followed by an incorrect $\{z=\}$ $\frac{7}{2}+\frac{1}{2}i$			
	Note	${z=}$ $\frac{1}{2}$ + i $\frac{7}{2}$ is fine for the final A n	mark			
	Note	Give final A0 for $\{z = \}$ $\frac{1+7i}{2}$ without	out reference to e.g. $a = \frac{1}{2}, b = \frac{7}{2}$ or $\frac{1}{2} + \frac{7}{2}i$,	etc.		
(ii)	Note	$w = (6 - \lambda) + (3 + 2\lambda)i \implies (15)^2 = (60 + 10)^2$	$(5-\lambda)^2 - (3+2\lambda)^2$ is 1st M0			
	Note	$ (3+\lambda i)(2+i) = 15 \implies \sqrt{(3^2-\lambda^2)}$				
	Note	Give final A0 for either • $\lambda = 6, -6 \Rightarrow \lambda = 6$ • $\lambda = 6, -6 \Rightarrow \lambda = -6$	•			

Question Number	Scheme		Notes	Mark	TS.	
6.	$C: y^2 = 32x$; S is the focus of C; $P(2, 8)$ lies of	on C ; T lies o	n the di	recrix of C . $H: xy = 4$		
(a)	S has coordinates (8, 0)			(8, 0)	В1 с	ao
						(1)
(b)	{ PT is parallel to the x-axis \Rightarrow } $T(-8, 8) \Rightarrow R$ Focus-directrix Property $\Rightarrow PT = \sqrt{8^2 + (8-2)^2}$		= 10	PT = 10	B1 ca	ao
		I				(1)
(c)	$y = \sqrt{32} x^{\frac{1}{2}} \implies \frac{dy}{dx} = \frac{1}{2} \sqrt{32} x^{-\frac{1}{2}} \text{ or } 2\sqrt{2} x^{-\frac{1}{2}}$			$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-\frac{1}{2}}; k \neq 0$		
	$y^2 = 32x \implies 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 32$			$\lambda y \frac{\mathrm{d}y}{\mathrm{d}x} = \mu \; ; \; \lambda, \mu \neq 0$	M1	
	$x = 8t^2$, $y = 16t \implies \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = 16\left(\frac{1}{16t}\right)$	$x = at^2$, $y =$	2at ⇒	their $\frac{dy}{dt} \times \frac{1}{\text{their } \frac{dy}{dt}}$; $a \neq 0$		
	So at P , $m_T = 2$			work leading to $m_T = 2$	A1	
				at line method using their		
	• $y-8 = "2"(x-2)$ • $8 = "2"(2) + c \implies y = "2"x + \text{their } c$			which is found by using	M1	
	Correct algebra leading to $y = 2x + 4$	calculus. Note: m_T must be a value			A1 *	
	Correct algebra leading to $y = 2x+4$ * Correct solution only			Al	(4)	
(d)	1 - 24(224 + 4) = 4 - 1 - 1 - 2 - 1 - 4 - 1	utes either $y = 2x + 4$ in	nto xy =	= 4		()
	$\begin{bmatrix} x \\ y \end{bmatrix}$	$y = \frac{4}{x}$ or $x = \frac{4}{x}$	_		M1	
	-=2(2t)+4		ι	ato $y = 2x + 4$ or x only, y only or t only		
	$2x^2 + 4x - 4 = 0$ or $x^2 + 2x - 2 = 0$ or	ar air equation		correct 3 term quadratic		
	$\frac{1}{2}y^2 - 2y - 4 = 0$ or $y^2 - 4y - 8 = 0$ or Note:	$2x^2 + 4x = 4$	$\frac{1}{2}y^2 -$	$2y - 4 = 0, 2 = 4t^2 + 4t$	A1	
	$4t^2 + 4t - 2 = 0$ or $2t^2 + 2t - 1 = 0$ or 2	$2x^2 + 4x - 4$ {=	$= 0$ } are	acceptable for this mark		
	• $\{x^2 + 2x - 2 = 0 \Rightarrow\} (x+1)^2 - 1 - 2 = 0 \Rightarrow x = 0$					
	• $\left\{2t^2 + 2t - 1 = 0 \Longrightarrow\right\} t = \frac{-2 \pm \sqrt{(2)^2 - 4(2)(-1)}}{2(2)}$ and either $x = 2\left(\frac{1}{2} \pm \frac{1}{2}\sqrt{3}\right)$ or $y = \frac{2}{\left(\frac{1}{2} \pm \frac{1}{2}\sqrt{3}\right)}$	$\frac{1}{\sqrt{3}}$ for	rect met squar mula or	on the previous M mark thod (e.g. completing the e, applying the quadratic factorising) of solving a d either $x =$ or $y =$	dM1	
	• $\{y^2 - 4y - 8 = 0 \Rightarrow\}$ $y = \frac{4 \pm \sqrt{(-4)^2 - 4(1)}}{2(1)}$	(-8)				
	Either $x = -1 \pm \sqrt{3}$ or $y = 2 \pm 2\sqrt{3}$		correct y	oth correct x coordinates coordinates. (See note)	A1	
	E.g. $y = 2(-1 + \sqrt{3}) + 4$ or $y = \frac{4}{(-1 + \sqrt{3})}$, etc.		_	ent on the first M mark least one attempt to find the other coordinate	dM1	
	Either $(-1+\sqrt{3}, 2+2\sqrt{3}), (-1-\sqrt{3}, 2-2\sqrt{3})$ or $x = -1+\sqrt{3}, y = 2+2\sqrt{3}$ and $x = -1-\sqrt{3}, y$	$=2-2\sqrt{3}$		All correct and paired	A1	
						(6)
						12

	Question 6 Notes					
6. (d)	Note	Condone $y = 2 \pm \sqrt{12}$ for the 2nd A1 mark.				
	Note	Do not allow $(-1+\sqrt{3}, 2+\sqrt{12}), (-1-\sqrt{3}, 2-\sqrt{12})$ for the final A mark.				
	Note	Writing $x = -1 \pm \sqrt{3}$, $y = 2 \pm 2\sqrt{3}$ without any evidence of the correct coordinate pairings is				
		final A0				
	Note	Writing coordinates the wrong way round				
		E.g. writing $x = -1 + \sqrt{3}$, $y = 2 + 2\sqrt{3}$ and $x = -1 - \sqrt{3}$, $y = 2 - 2\sqrt{3}$				
		followed by $(-1+\sqrt{3}, 2-2\sqrt{3}), (-1-\sqrt{3}, 2+2\sqrt{3})$ is final A0				
	Note	Imply the 1st dM1 mark for writing down the correct roots for their quadratic equation. E.g.				
		• $2x^2 + 4x - 4 = 0$ or $x^2 + 2x - 2 = 0$ or $2x^2 + 4x = 4 \rightarrow x = -1 \pm \sqrt{3}$				
		• $\frac{1}{2}y^2 - 2y - 4 = 0$ or $y^2 - 4y - 8 = 0 \rightarrow y = 2 \pm 2\sqrt{3}$				
	Note	You can imply the 1 st A1, 1 st dM1, 2 nd A1 marks for either				
		• $x(2x+4) = 4$ or $\frac{4}{x} = 2x+4 \rightarrow x = -1 \pm \sqrt{3}$				
		$\bullet \left(\frac{y-4}{2}\right)y = 4 \text{ or } y = 2\left(\frac{4}{y}\right) + 4 \to y = 2 \pm 2\sqrt{3}$				
		with no intermediate working.				
	Note	You can imply the 1 st A1, 1 st dM1, 2 nd A1, 2 nd dM1 marks for either				
		• $x(2x+4) = 4$ or $\frac{4}{x} = 2x+4 \rightarrow x = -1 \pm \sqrt{3}$ and $y = 2 \pm 2\sqrt{3}$				
		• $\left(\frac{y-4}{2}\right)y = 4 \text{ or } y = 2\left(\frac{4}{y}\right) + 4 \rightarrow y = 2 \pm 2\sqrt{3} \text{ and } x = -1 \pm \sqrt{3}$				
		with no intermediate working.				
	N T 4	You can then imply the final A1 mark if they correctly state the correct coordinate pairings.				
	Note	2nd A1: Allow this mark for both correct x coordinates or both correct y coordinates which are in				
		the form $\frac{a \pm b\sqrt{c}}{d}$, where a, b, c and d are simplified integers				

Question Number	Scheme Notes			Mark	S	
7.	$\mathbf{A} = \begin{pmatrix} 6 & k \\ -3 & -4 \end{pmatrix}, k \neq 8; \ \mathbf{A}^2 + 3$	$3\mathbf{A}^{-1} = \begin{pmatrix} 5 & 9 \\ -3 & -5 \end{pmatrix};$	$= \begin{pmatrix} 5 & 9 \\ -3 & -5 \end{pmatrix}; \mathbf{M} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix}$			
(i)(a)	$\det(\mathbf{A}) = 6(-4) - (k)(-3) \ \left\{ = -24 + 3k \right\}$	Correct det(A) which can be un-simplifed or simplifed				
	$\left\{ \mathbf{A}^{-1} = \right\} \frac{1}{3k - 24} \begin{pmatrix} -4 & -k \\ 3 & 6 \end{pmatrix} \qquad \qquad \begin{pmatrix} -4 & -k \\ 3 & 6 \end{pmatrix}$					
	3k - 24 (3 · 0)		Correct A ⁻¹		(2)	
	(36-3k) (6k-4k) (36-6k-4k)	-3k $2k$	Correct A ² which can be		(3)	
(b)	$\left\{ \mathbf{A}^{2} = \right\} \begin{pmatrix} 36 - 3k & 6k - 4k \\ -18 + 12 & -3k + 16 \end{pmatrix} = \begin{pmatrix} 36 - 6k - 4k \\ -6k - 6k - 4k \end{pmatrix}$	$6 \qquad -3k+16$	un-simplifed or simplifed	B1		
	(26 2k 2k) 2 (4	k) (5 0)			(1)	
(c)	$ \bullet \begin{pmatrix} 36 - 3k & 2k \\ -6 & -3k + 16 \end{pmatrix} + \frac{3}{3k - 24} \begin{pmatrix} -4 & -4 \\ 3 & -4 \end{pmatrix} $, , ,				
	• $36-3k - \frac{12}{3k-24} = 5$ • $2k - \frac{9}{3k-24} = -3$ • $-3k$	$-\frac{3k}{3k-24}=9$				
	• $-6 + \frac{9}{3k - 24} = -3$ • $-3k$	$+16 + \frac{18}{3k - 24} = -$	-5			
	Either	3K - 24				
	• attempts to form an equation for (their \mathbf{A}^2) + 3(their \mathbf{A}^{-1}) = $\begin{pmatrix} 5 & 9 \\ -3 & -5 \end{pmatrix}$ in k					
	• or attempts to add an element of (their A^2) to the corresponding element of 3(their A^{-1})					
	and equates to the corresponding element of the given matrix to form an equation in k					
	$\left\{ \text{e.g. } -6 + \frac{9}{3k + 24} = -3 \right\} \implies k = 9$		dependent on the previous M mark Solves their equation to give $k =$			
	3k-24		Final answer of $k = 9$ <i>only</i>			
	Note: Parts (ii)(a) and	(ii)(b) can be mark		(3)		
	Please refer to the notes on the ne	` ' ` '	•			
(ii)(a)	• $p = \left(-\frac{1}{2}\right)(-1) - \left(-\sqrt{3}\right)\left(\frac{\sqrt{3}}{2}\right) = 2$ • $-p\sin\theta = -\sqrt{3}$, $p\cos\theta = -1$		Attempts $p = \pm \frac{1}{2} \pm \left(\sqrt{3}\right) \left(\frac{\sqrt{3}}{2}\right)$	M1		
	• $-p\sin\theta = -\sqrt{3}$, $p\cos\theta = -1$ • $p = \sqrt{(\pm\sqrt{3})^2 + (-1)^2} = 2$		or uses a full method of			
	<u> </u>	_1	trigonometry to find $p =$			
	$op = \frac{-\sqrt{3}}{-\sin"120^{\circ"}} = 2$ or $p = \frac{-1}{\cos"120^{\circ"}} = 2$ $p = 2$ only					
					(2)	
(b)	$\cos \theta = -\frac{1}{2}$, $\sin \theta = \frac{\sqrt{3}}{2}$, $\tan \theta = -\sqrt{3}$ Uses trigonometry to find an expression or value for θ which is in the range (1.57, 3.14) or					
	E.g. $\bullet \Rightarrow \theta = 120^{\circ}$	(90°, 180°) (-3.14, -4.71) or (-180°, -270°)				
	$\bullet \implies \theta = 180 - \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = 120^{\circ}$	120° or -240° or $\frac{2\pi}{3}$ or $-\frac{4\pi}{3}$				
	• $\Rightarrow \theta = 180 - \tan^{-1}\left(\sqrt{3}\right) = 120^{\circ}$	or awrt 2.09 or awrt -4.19				
					(2)	
					11	

		Question 7 Notes							
7. (i)(c)	Note	Give 1st M1 for $ \begin{pmatrix} 36 - 3k - \frac{12}{3k - 24} & 2k - \frac{3k}{3k - 24} \\ -6 + \frac{9}{3k - 24} & -3k + 16 - \frac{18}{3k - 24} \end{pmatrix} = \begin{pmatrix} 5 & 9 \\ -3 & -5 \end{pmatrix} $							
	Note	• $36-3k - \frac{12}{3k-24} = 5 \rightarrow 3k^2 - 55k + 252 = 0 \rightarrow (k-9)(3k-28) = 0 \rightarrow k = 9, \frac{28}{3}$							
		• $2k - \frac{3k}{3k - 24} = 9 \rightarrow k^2 - 13k + 36 = 0 \rightarrow (k - 9)(k - 4) = 0 \rightarrow k = 9, 4$							
		$\bullet -6 + \frac{9}{3k - 24} = -3 \to k = 9$							
		• $-3k + 16 - \frac{18}{3k - 24} = -5 \rightarrow k^2 - 15k + 54 = 0 \rightarrow (k - 9)(k - 6) = 0 \rightarrow k = 9, 6$							
	Note	Uses a correct element equation in part (c) leading to $k = 9$ is M1 dM1 A1 even if they have							
	.	followed through an incorrect A^{-1} in (i)(a) or an incorrect A^{2} in (ii)(b).							
	Note	Give M0 dM0 A0 for an incorrect method of $36 - 3k - 4 = 5 \Rightarrow k = 9$							
(ii)	Note	$\mathbf{M} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} \cos \theta & -p \sin \theta \\ \sin \theta & p \cos \theta \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix}$							
	Note	IMPORTANT NOTE							
		Give (ii)(a) M0A0 (b) M0A0 for a method of							
		$\mathbf{M} = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} \cos \theta & -\sin \theta \\ p \sin \theta & p \cos \theta \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix}$							
		leading to (ii)(a) $p =$, (ii)(b) $\theta =$							
(ii)(a)	Note	$\det(\mathbf{M}) = \left(-\frac{1}{2}\right)(-1) - \left(-\sqrt{3}\right)\left(\frac{\sqrt{3}}{2}\right) = 2 \text{ followed by } p = \sqrt{2} \text{ is M0 A0}$							
	Note	$p = \det(\mathbf{M}) = \left(-\frac{1}{2}\right)(-1) - \left(-\sqrt{3}\right)\left(\frac{\sqrt{3}}{2}\right) = 2 \text{ is M1 A1}$							
	Note	$p = \frac{\sqrt{(\pm\sqrt{3})^2 + (-1)^2}}{\sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}} = 2 \text{ is M1 A1}$							

Question Number	Scheme		Notes		Marks
8.	(i) $u_1 = 3$, $u_{n+1} = u_n + 3n - 2$, $u_n = \frac{3}{2}n^2 - \frac{7}{2}n + 5$ (ii) $f(n) = 3^{2n+3} + 1$ is divisible by				
(i)	$n=1, \ u_1=\frac{3}{2}-\frac{7}{2}+5=3$	Ţ	Uses $u_n = \frac{3}{2}n^2 - \frac{7}{2}n + 5$ to show that $u_1 = 3$		B1
	(Assume the result is true for $n = k$)	(Assume the result is true for $n = k$)			
	$\{u_{k+1} = u_k + 3k - 2 \Longrightarrow \}$		Finds u_k	by attempting to substitute	
	$u_{k+1} = \frac{3}{2}k^2 - \frac{7}{2}k + 5 + 3k - 2 \left\{ = \frac{3}{2}k^2 - \frac{1}{2}k + 3 \right\}$, , , , , , , , , , , , , , , , , , , ,			M1
	$= \frac{3}{2}(k+1)^2 - 3k - \frac{3}{2} - \frac{1}{2}k + 3$		_	ent on the previous M mark. write u_{k+1} in terms of $(k+1)$	dM1
	$= \frac{3}{2}(k+1)^2 - \frac{7}{2}k + \frac{3}{2}$				
	$= \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5$	Uses	<i>algebra</i> to ach	ieve this result with no errors	A1
	If the result is <u>true for $n = k$</u> , then it is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is <u>true for</u> $n = 1$, then the result is true for $n = 1$.				A1 cso
					(5)
(ii)	$f(1) = 3^5 + 40 - 27 = 256$			f(1) = 256 is the minimum	B1
Way 1	$f(k+1) - f(k) = (3^{2(k+1)+3} + 40(k+1) - 27) - (3^{2(k+1)+3$	$3^{2k+3} + 1$	40k - 27)	Attempts $f(k+1) - f(k)$	M1
	$f(k+1) - f(k) = 8(3^{2k+3}) + 40$				
	$= 8(3^{2k+3} + 40k - 27) - 64(5k - 4)$			$8(3^{2k+3} + 40k - 27)$ or $8f(k)$	A1
	or = $8(3^{2k+3} + 40k - 27) - 320k + 256$	_		-64(5k-4) or $-320k+256$	A1
	$f(k+1) = 8f(k) - 64(5k-4) + f(k)$ or $f(k+1) = 8f(k) - 320k + 256 + f(k)$ or $f(k+1) = 9(3^{2k+3} + 40k - 27) - 320k + 256$	dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject and expresses it in		racy marks being awarded. the subject and expresses it in	dM1
	011(k+1) - 9(3 + 40k - 27) - 320k + 230	terms of $f(k)$ or $(3^{2k+3} + 40k - 27)$			
	If the result is <u>true for $n = k$</u> , then it is <u>true for</u> true for $n = 1$, then the re				A1 cso
					(6)
(ii)	$f(1) = 3^5 + 40 - 27 = 256$			f(1) = 256 is the minimum	B1
Way 2	$f(k+1) = 3^{2(k+1)+3} + 40(k+1) - 27$			Attempts $f(k+1)$	M1
	$f(k+1) = 9(3^{2k+3}) + 40k + 13$				
	$= 9(3^{2k+3} + 40k - 27) - 64(5k - 4)$		$9(3^{2k+3} + 40k - 27)$ or $9f(k)$		A1
	or = $9(3^{2k+3} + 40k - 27) - 320k + 256$			-64(5k-4) or $-320k+256$	A1
	$f(k+1) = 9f(k) - 64(5k-4)$ or $f(k+1) = 9f(k) - 320k + 256$ or $f(k+1) = 9(3^{2k+3} + 40k - 27) - 320k + 256$	M	acculates $f(k+1)$	at least one of the previous tracy marks being awarded. The subject and expresses it in of $f(k)$ or $(3^{2k+3} + 40k - 27)$	dM1
	If the result is true for $n = k$, then it is true for $n = k + 1$, As the result has been shown to be				
	true for $n = 1$, then the re				A1 cso
					11

Question Number		Scheme			Notes	Marks	
8.		(ii) $f(n) = 3^{2n+3} + 40n - 27$ is divisible by 64					
(ii)	General Method: Using $f(k+1) - mf(k)$; where m is an integer						
Way 3		$f(1) = 3^5 + 40 - 27 = 256$			f(1) = 256 is the minimum	B1	
	f(k+1)	$mf(k) = (3^{2(k+1)+3} + 40(k+1) - 27) - m$	$n(3^{2k+3})$	+40k-27)	Attempts $f(k+1) - mf(k)$	M1	
	$f(k+1) - mf(k) = (9-m)(3^{2k+3}) + 40k(1-m) + (13+27m)$						
	= (9	-m)(3 ^{2k+3} + 40k - 27) - 64(5k - 4)		$(9-m)(3^{2k-1})$	+3 + 40k - 27) or $(9 - m)f(k)$	A1	
	or = (9)	$-m$)($3^{2k+3} + 40k - 27$) $-320k + 256$		-64(5k-4) or $-320k+256$			
	$f(k+1) = (9-m)f(k) - 64(5k-4) + mf(k)$ or $f(k+1) = (9-m)f(k) - 320k + 256 + mf(k)$ dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject and expresses it in terms of $f(k)$ or $(3^{2k+3} + 40k - 27)$					dM1	
	If the r	result is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true for }}$	r n = k	+1, As the re	sult has been shown to be	A1 cso	
		true for $n = 1$, then the result	ılt is <u>is</u>	true for all <i>n</i>	$(\in \mathbb{Z}^+)$	AI CSU	
(ii)		General Method: U	Jsing f	f(k+1) - mf(k)	·)		
Way 4	$f(1) = 3^5 + 40 - 27 = 256$				f(1) = 256 is the minimum	B1	
	$f(k+1) - mf(k) = (3^{2(k+1)+3} + 40(k+1) - 27) - m(k+1)$			+40k-27)	Attempts $f(k+1) - mf(k)$	M1	
	f(k+1)	$mf(k) = (9-m)(3^{2k+3}) + 40k(1-m) +$	-(13+2)	27 <i>m</i>)			
	m = -55	$\Rightarrow f(k+1) + 55f(k) = 64(3^{2k+3}) - 22k$	240k +	1472	$m = -55$ and $64(3^{2k+3})$	A1	
	m = -55 and $-2240k + 14/2$			A1			
	$f(k+1) = 64(3^{2k+3}) - 2240k + 1472 - 55f(k)$ or $f(k+1) = 64(3^{2k+3}) - 64(35k - 23) - 55f(k)$ dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject			dM1			
	and expresses it in terms of $f(k)$						
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> , As the result has been shown to be					A Lago	
		true for $n = 1$, then the resu	sult <u>is t</u>	rue for all n (e	$\in \mathbb{Z}^+)$	A1 cso	
		Que	estion	8 Notes			
(i) & (ii)	Note	Final A1 for parts (i) and (ii) is depe	endent	on all previous	us marks being scored in that I	part.	
	It is gained by candidates conveying the ideas of all four underlined points						
		either at the end of their solution or a					
(i)	Note Moving from either $u_{k+1} = \frac{3}{2}k^2 - \frac{7}{2}k + 5 + 3k - 2$ or $u_{k+1} = \frac{3}{2}k^2 - \frac{1}{2}k + 3$						
	to $u_{k+1} = \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5$ with no intermediate stage involving either						
		• writing u_{k+1} as a function of $(k+1)$					
	• or writing u_{k+1} as $u_{k+1} = \frac{3}{2}k^2 + 3k + \frac{3}{2} - \frac{7}{2}k - \frac{7}{2} + 5$						
	is dM1A0A0						
	Note Some candidates will write down						
	$u_{k+1} = \frac{3}{2}k^2 - \frac{7}{2}k + 5 + 3k - 2$ (give 1 st M1) and simplify this to $u_{k+1} = \frac{3}{2}k^2 - \frac{1}{2}k + 3$						
	They will then write $u_{k+1} = \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5$ (give 2 nd M1) and use algebra						
	$u_{k+1} = \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5 = \frac{3}{2}(k^2 + 2k + 1) - \frac{7}{2}k - \frac{7}{2} + 5 = \frac{3}{2}k^2 - \frac{1}{2}k + 3 $ (give					e 1 st A1)	

	Question 8 Notes Continued								
8. (ii)	Note	Note Some candidates may set $f(k) = 64M$ and so may prove the following general result							
		• $\{f(k+1) = 9f(k) - 64(5k-4)\} \Rightarrow f(k+1) = 576M - 64(5k-4)$							
		• $\{f(k+1) = 9f(k) - 320k + 256\} \Rightarrow f(k+1) = 576M - 320k + 256$							
	Note	$f(n) = 3^{2n+3} + 40n - 27$ can be rewritten as either f	f(n) =	$=27(3^{2n})+40n-27$					
		or $f(n) = 27(9^n) + 40n - 27$							
	Note	In part (ii), Way 4 there are many alternatives where	cand	lidates focus on isolating					
		$\beta(3^{2k+3})$ where β is a multiple of 64. Listed below	v are	some alternative results:					
		• $f(k+1) = 128(3^{2k+3}) - 119f(k) + 4800k - 3$	3200						
		• $f(k+1) = -64(3^{2k+3}) + 73f(k) - 2880k + 1$	1984						
		See below for how these are derived.							
8. (ii)		(ii) $f(n) = 3^{2n+3} + 40n - 27$ is	divisi	ble by 64					
		The A1A1dM1 marks for Alternatives using $f(k+1) - mf(k)$							
Way 4.1	f(k+1) =	$= 9(3^{2k+3}) + 40k + 13$							
	=	$= 128(3^{2k+3}) - 119(3^{2k+3}) + 40k + 13$							
	_	$= 128(3^{2k+3}) - 119[3^{2k+3} + 40k - 27] + 4800k - 3200$		$m = -119$ and $128(3^{2k+3})$	A1				
	_	- 120(3) - 119[3 + 40k - 27] + 4000k - 3200	m	= -119 and $4800k - 3200$	A1				
	f(k+	$-1) = 128(3^{2k+3}) - 119f(k) + 4800k - 3200$		as before	dM1				
	or $f(k+1) = 128(3^{2k+3}) - 119[3^{2k+3} + 40k - 27] + 4800k - 3200$								
Way 4.2	$f(k+1) = 9(3^{2k+3}) + 40k + 13$								
	=	$= -64(3^{2k+3}) + 73(3^{2k+3}) + 40k + 13$							
		$= -64(3^{2k+3}) + 73[3^{2k+3} + 40k - 27] - 2880k + 1984$ $f(k+1) = -64(3^{2k+3}) + 73f(k) - 2880k + 1984$		$m = 73$ and $-64(3^{2k+3})$	A1				
	_			=73 and $-2880k + 1984$	A1				
	f(k +			as before	dM1				
	or $f(k+1) = -64(3^{2k+3}) + 73[3^{2k+3} + 40k - 27] - 2880k + 1984$				MINI I				